By using tangent derivative an analogue of K - T necessary and sufficient optimality conditions is proved.
本文讨论了目标函数是集值映射的约束和无约束最优化问题,应用切导数,得到了类似的K -T 必要和充分条件.
互联网
A K - K - T point and corresponding Lagrange multiplier of MOP are obtained by tracking numerically this path.
数值追踪这条路径,可以得到多目标规划问题(MOP)的K-K-T点及相应的Lagrange乘子.
互联网